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We present an adaptive importance sampling method for quantifying the statistics of rare-event
processes in atomistic simulations. The approach is based on an explicit evaluation of the probability
that a sequence of states (or path) initiating in a state A leads to a reactive transition event to final
state B. The importance sampling method seeks to bias the sampling of system trajectories such that
those that contribute significantly, i.e. those that characterize reactive transitions, are generated
more frequently. This is accomplished by means of an importance function, which modifies the
transition probabilities among the microstates that comprise a path. For each problem there exists
an optimal importance function, which biases that path sampling in such a manner that each path
initiating in A leads to a successful event. The fact that the optimal function obeys a variational
principle, then leads to an adaptive method in which a trial function form containing a set of
adjustable parameters is chosen. The parameters are then adjusted so as to bring the trial function
as close as possible to the optimal importance function. We demonstrate the method in two model
problems.

PACS numbers:

I. INTRODUCTION

The purpose of predictive modeling and simulation
at the atomistic level is to characterize and quantify
the atomistic unit mechanisms that control the macro-
scopic behavior of complex systems. This objective is
common to many fields of research, including chemistry,
physics, biology, and materials science, where a funda-
mental understanding of the elementary processes re-
quires detailed insight into the atomic-scale configura-
tions and rearrangements. The atomistic modeling tech-
niques of molecular dynamics (MD) and Monte Carlo
(MC) provide powerful tools in this context1, allowing
a detailed observation of atomic-scale structures during
controlled computational “experiments” that are difficult
or impossible to realize in a laboratory.

In general, a meaningful atomistic simulation should
satisfy three conditions: (i) the description of the in-
teratomic interactions should be sufficiently accurate,
(ii) the number of particles considered in the simula-
tion should be statistically significant, and (iii) the sim-
ulation should cover a sufficiently long time interval to
cover the processes of interest. While the development
of modern electronic-structure theory2 and the evolution
of massively parallel computing resources3 have signif-
icantly boosted the capabilities of atomistic simulations
with regard to the first two conditions, the remaining bar-
rier to predictive atomistic modeling concerns the limited
time scale accessible to MD and MC simulations.

This key limitation stems from the fact that MD and
MC naturally operate on the time scale of typical atomic
vibrations in the system. For instance, in solid-phase
systems this scale is defined by a characteristic phonon
frequency, typically of the order of 1013 Hz, restricting
the accessible simulation time to the order of nanosec-
onds. On the other hand, many interesting phenomena,

such as relaxation in glasses and protein folding, occur on
time scales of milliseconds or even longer. The origin of
this time-scale disparity can be traced to topographical
features of the potential-energy surface, which typically
contains several deep energy basins surrounded by bar-
riers many times higher than the thermal-energy scale.
Given that the rate of inter-basin transitions typically
decreases exponentially with increasing barrier height,
such transitions represent rare events on the time scale
of atomic/molecular motion. Consequently, attempts to
simulate such transitions using conventional MD or MC
methods are hopelessly inefficient since virtually all CPU
cycles are spent on the “irrelevant” equilibrium motion
within a basin.

As a result, significant attention has been given to the
development of special simulation tools that enable the
study of rare transition events. A large portion of this
effort has been devoted to methods within the framework
of transition state theory (TST),4 ranging from a variety
of techniques designed to locate saddle point configura-
tions in the potential-energy landscape,5–8 to accelerated
dynamics methods.9,10 While TST-based approaches are
effective in systems with only a few particles, they are
inefficient for handling transitions that involve collective
motion of large numbers of atoms and multiple reactive
mechanisms. To handle such complex problems effec-
tively on should, instead of focusing on saddle points,
adopt an approach based on system trajectories. In this
context, a successful approach would be to modify the
standard MD and MC techniques in such a manner that
the probability of sampling a successful transition event
is enhanced while spending less CPU cycles on the ”ir-
relevant” equilibrium trajectories. A good importance
sampling scheme of this kind should satisfy two condi-
tions: (i) the relative probabilities of different transition
trajectories must remain unaltered, and (ii), the abso-
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lute probability of sampling a successful transition event
should be enhanced by a known amount. These two con-
ditions should be met to ensure that different transition
mechanisms are sampled with correct relative probabili-
ties, and allow a straightforward calculation of the cor-
responding transition rates.

The development of the transition path sampling
(TPS) method by D. Chandler and coworkers11–14 was
a fundamental step in this direction. TPS samples the
subset of transition paths through a random-walk pro-
cedure that generates a subsequent transition event by
slightly modifying the previous one. This approach sat-
isfies the first condition and preserves the relative impor-
tance of different transition mechanisms. On the other
hand, TPS does not satisfy the second condition; the ra-
tio of the probabilities of successful to unsuccessful events
is altered by an unknown amount. As a result, the cal-
culation of transition rates requires a significant amount
of computational effort.15

In this paper we discuss a new path-based importance
sampling (IS) strategy for simulating rare-event processes
at the atomistic level.16 The approach is based on the im-
portance sampling MC formalism17 and seeks to enhance
the probability of sampling successful transition events
by using an importance function. By selecting it ap-
propriately, one focuses predominantly on the successful
transition events, while keeping track of the quantitative
changes in their absolute probabilities. In this manner,
the rare-event problem is reformulated into an optimiza-
tion problem for the best-possible importance function.
Once this function is known, the problem is solved com-
pletely: only successful transition events are generated
while all others are neglected. Moreover, the formula-
tion satisfies both conditions mentioned earlier. The rela-
tive probabilities among different successful paths remain
unaltered and the absolute sampling probabilities are en-
hanced by a known amount, facilitating the computation
of transition rates.

The main challenge of the method is the identifica-
tion of an appropriate importance function, especially for
problems involving large numbers of degrees of freedom.
Yet, we find close resemblance between our search for
the optimal importance function and the variational op-
timization of the ground state many-electron wave func-
tion in variational Quantum Monte Carlo (QMC) simu-
lations.18 The latter involves the optimization of a trial
wavefunction characterized by a set of parameters fαg
with respect to an objective function, usually minimiz-
ing the energy or its variance, and has been successfully
applied to large systems.18,19 Here, we show that an iden-
tical procedure can be used to find a suitable importance
function for a rare-event problem. In this case, a trial
importance function containing a set of parameters is
optimized with respect to the variance in the statistical
weights of the trajectories generated in the IS-MC sim-
ulation. To demonstrate the IS-MC methodology and
associated numerical algorithms we apply the technique
to two model problems.

The remainder of the paper has been organized as fol-
lows. In section II we discuss the theory behind the IS-
MC path sampling formalism. Section III describes the
details of the applications, including the used optimiza-
tion algorithms and discusses the obtained results. We
conclude the discussion in IV.

II. METHODOLOGY

A. The rare-event problem and Monte Carlo
quadrature

Consider a classical N -particle system in which the
interactions are described in terms of a potential-energy
function E(R), where the 3N -dimensional vector R =
(r1, r2, ¢ ¢ ¢ , rN ) specifies the microscopic configuration of
the system. Let us assume that E(R) is known to possess
the metastable states A and B, as shown schematically
in Fig. 1, and we are interested in computing the rate
constant for transitions from region A to B.

The starting point of our approach is the fact that we
can unambiguously slice a reactive trajectory, such as
the one shown in Fig. 1, into a sequence of failure paths
followed by a single successful path. Here, we define a
failed path as a sequence of microstates that initiates in
region A, exits it at some instant, but returns to it before
reaching B. In contrast, a successful segment is defined
as a sequence of states that initiates in A and succeeds
in reaching B before returning to state A. The reactive
trajectory shown in Fig. 1, for instance, consists of 3
failed paths, namely the sequences of states 0 ! 1, 1 ! 2,
and 2 ! 3, and the successful path 3 ! 4. In this view, a
transition event is considered rare if the expectation value
of the number of failed paths observed before detecting a
successful one is very large. In other words, a transition
event is rare when the success probability ps of sampling
a successful path from some initial condition in A is very
small.

The success probability ps is the most fundamental
quantity in this formulation of the rare-event problem
because if it is known, the computation of the transition
rate becomes straightforward. Specifically, the forward
transition rate kA!B is given by

kA!B =
1
τw

, (1)

where τw is the average waiting time before a transition
from A to B occurs. This time can be easily computed
when realizing that a reactive trajectory, on average, is
expected to consist of Nf = 1/ps failed paths followed by
a single successful one. Accordingly, the average waiting
time becomes

τw =
hτif

ps
+ hτis, (2)

where hτif and hτis represent the average duration of
failed and successful paths, respectively. The first term,
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which represents the overwhelmingly dominant part of
the waiting time, can be estimated from the simulation
of an ensemble of failed paths. This, of course, can be
done very accurately and efficiently given that the prob-
ability of sampling such failed paths is essentially equal
to 1. The second term is significantly more challenging,
however, given that ps is small and a direct simulation
will effectively not sample any successful paths. But this
term is usually negligibly small compared to the first one
and, in most cases, can be safely ignored.

How do we go about the calculation of ps? For this
purpose, we consider the statistics of the ensemble of
all possible successful and failed paths. Let us start by
considering the ensemble of all possible paths (successful,
failure, or neither20) of a fixed length τ , specified by the
sequences of microstates R(τ) = (R0,R1,R2, ¢ ¢ ¢ ,Rτ ).
Let P [R(τ)] be the corresponding distribution function,
which in a typical MC random-walk simulation can be
written in the form

P [R(τ)] = ρ(R0)
τ¡1∏

i=0

K (Ri ! Ri+1), (3)

where ρ(R0) denotes the equilibrium distribution (e.g.
canonical ensemble) of initial microstates R0 and the
K (Ri ! Ri+1) is a set of transition probabilities.
P [R(τ)] is properly normalized, i.e.

∫
DR(τ)P [R(τ)] = 1, (4)

where the notation13
∫

DR(τ) indicates a summation
over all possible paths of length τ . Next, we wish to
restrict this ensemble to the subset of successful and
failed paths according to the definition adopted above.
The probability distribution function of the restricted
fail/success ensemble of paths with a length τ can then
be written as

Pfs[R(τ)] =
P [R(τ)](fF[R(τ)] + fS[R(τ)])

Zfs(τ)
, (5)

where fF[R(τ)] and fS[R(τ)] are characteristic path
functions that indicate whether the path is a failure or a
success:

fF(S)[R(τ)] =
{

1 , if path is a failure (success)
0 , otherwise , (6)

and the denominator is the partition function of the
fail/success ensemble of paths with length τ ,

Zfs(τ) =
∫

DR(τ)P [R(τ)](fF[R(τ)] + fS[R(τ)]). (7)

To compute the success probability ps, however, we
need to remove the constraint of considering only paths
with a fixed length and look at the ensemble of all pos-
sible fail/success paths of any length τ . The probability

of sampling the path R(τ) from the full fail/success en-
semble then becomes

PFS[R(τ)] =
P [R(τ)](fF[R(τ)] + fS[R(τ)])

ZFS
, (8)

where the denominator

ZFS =
∫ 1

0

dτ Zfs(τ) (9)

is the partition function of the full fail/success ensemble.
The success probability ps is then given by the ensemble
average of the characteristic path function fS over the
fail/success ensemble, i.e.

ps =
∫ 1

0

dτ

∫
DR(τ) PFS[R(τ)] fS [R(τ)]. (10)

In similar fashion, the failure probability pf is given by

pf =
∫ 1

0

dτ

∫
DR(τ) PFS[R(τ)] fF [R(τ)]. (11)

so that PFS is properly normalized, i.e.

ps + pf = 1. (12)

In principle, the formulation of ps in terms of the inte-
gral in Eq. (10) is ideally suited for standard MC quadra-
ture17. In this method we sample N trajectories Ri(τ)
from PFS and estimate the integral as the simple ”hit-or-
miss” arithmetic mean of the function fS [Ri(τ)],

ps = hfSiPFS
… fN

S =
1
N

N∑

i=1

fS [Ri(τ)]. (13)

Unfortunately, a direct application of this approach is
hopelessly ineffective since fS is nonzero only for a very
small fraction of the fail/success ensemble. As a result,
the procedure leads to very poor statistics, which is re-
flected by a large variance in the estimator fN

S . More
specifically, the quality measure17

var
(
fN

S

)

hfSi2PFS

=
1
N

(
1 ¡ ps

ps

)
,

shows that the proportionality factor of the typical 1/N
behavior for the variance of N -sample estimators17 is ex-
tremely large here since ps … 0.

To resolve this problem we resort to a strategy that is
frequently used to reduce the variance in MC quadra-
ture calculations, namely importance sampling17. For
this purpose, we rewrite Eq. (10) in the form

ps =
∫ 1

0

dτ

∫
DR(τ)

[
PFS[R(τ)]fS [R(τ)]

P̃FS[R(τ)]

]
P̃FS[R(τ)]

=
∫ 1

0

dτ

∫
DR(τ) f̃S [R(τ)] P̃FS[R(τ)], (14)
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where we have introduced a new path probability density
function P̃FS([R(τ)] that satisfies the conditions

P̃FS[R(τ)] ‚ 0 ,

∫ 1

0

dτ

∫
DR(τ)P̃FS[R(τ)] = 1. (15)

Instead of generating paths according to PFS and com-
puting the path average of the function fS(R(τ)), we
now sample from the alternative distribution function
P̃FS and compute the trajectory average of the function
f̃S [R(τ)]. In this manner, ps is estimated as

ps =
〈
f̃S

〉
P̃FS

= f̃N
S … 1

N

N∑

i=1

f̃S [Ri(τ)]. (16)

How do we choose P̃FS? The best-possible choice is
the one for which the variance of the new estimator in
Eq. (16) is minimized. Formally, it can be shown17 that
the optimal path distribution function is given by

P̃ opt
A [R(τ)] =

PFS[R(τ)]fS [R(τ)]
ps

, (17)

for which this variance is zero and only successful paths
are generated. As we will see below, the optimal path
distribution function can, in principle, be determined ex-
plicitly. Unfortunately, this is practically feasible only
for relatively simple problems involving few degrees of
freedom.

Instead, the strategy we will adopt is to search for
a P̃FS that is “similar” to the optimal path distribu-
tion function in the sense that it leads to an acceptable
low-variance estimator for ps. In practice, this implies
that we attempt to construct a probability distribution
function P̃FS for which the events that contribute signifi-
cantly to the integral in Eq. (10), i.e. those that represent
successful transition events, occur more frequently. The
variance serves as the guiding principle in this process,
representing an unambiguous quantitative quality mea-
sure. Conceptually, this approach is similar to the vari-
ational quantum MC approach18,19 in which the many-
electron wave function of a system of interest is obtained
by minimizing the variance in the energy for a given trial
wave function. This variance is zero if and only if the trial
wavefunction corresponds to the exact ground state. In
the path importance sampling case the variance of inter-
est is zero if and only if the optimal path distribution
function P̃ opt

A [R(τ)] is used.

B. Optimized importance sampling of Markovian
transition paths

Let us now consider the procedure for constructing a
suitable path probability distribution function P̃FS. For
this purpose, we now restrict the discussion to Markovian
path simulations, which are based on a set of transition
probabilities K(Ri ! Rj) that describe the statistics of

transitions from microstate Ri to Rj and are properly
normalized, i.e

n(Ri) ·
∑

j

K(Ri ! Rj) = 1. (18)

For a system in contact with a heat reservoir at a con-
stant temperature, for instance, the matrix K(Ri ! Rj)
may be constructed according to the Metropolis algo-
rithm17,21. The probability PFS of sampling a given se-
quence of L states from the fail/success ensemble is then
given by

PFS[R0,R1, ¢ ¢ ¢ ,RL] =
ρ(R0)
ZFS

L¡1∏

i=0

K(Ri ! Ri+1),

(19)
with ρ(R0) the canonical equilibrium distribution of ini-
tial microstates R0 in region A.

The goal of constructing P̃FS is to reduce the probabil-
ity of generating failed paths. To this end we apply two
transformations to the original transition probabilities.
The first is given by

K 0(Ri ! Rj) =





0, if i /2 A ^ j 2 A,

K(Ri ! Rj), otherwise,
(20)

Its purpose is to prohibit a trajectory from re-entering re-
gion A once it has exited. At first sight one might think
this would eliminate failed paths altogether. But obvi-
ously this is not the case, given that transformation (20)
introduces a set of states that no longer satisfy the nor-
malization condition Eq. (18). More specifically, for all
those states Ri outside of region A which have nonzero
matrix elements K(Ri ! Rj) for states Rj inside region
A, we have

n0(Ri) =
∑

j

K 0(Ri ! Rj) =
∑

Rj /2A

K(Ri ! Rj) < 1.

(21)
How do we handle such undernormalized transition

probabilities in a MC path simulation? In order to pre-
serve the interpretation of K 0 as being a matrix describ-
ing transition probabilities, a renormalization is required.
An appropriate way of doing so is to interpret undernor-
malization as the possibility for a path to be declared a
failure, even when the current (undernormalized) state
Ri is outside of region A. The probability for this to
occur is determined by the degree of undernormalization,
defined as

m0(Ri) = 1 ¡ n0(Ri) (22)

In this manner, when the current state Ri is undernor-
malized, the sampling procedure involves two stages. The
first step determines whether the path is declared a pre-
mature failure and terminated, or if it is allowed to con-
tinue. The second step is carried out only if the latter
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is the case, selecting the next microstate in the path.
The first step involves the sampling of a random number
ξ between 0 and 1, and if ξ < m0(Ri) the path is ter-
minated. Otherwise, the next microstate in the path is
sampled according to the nonzero elements of the tran-
sition probability matrix K 0, but which have now been
renormalized, i.e. K 0(Ri ! Rj)/n0(Ri).

It is not difficult to see that transformation (20) does
not affect the probabilities of sampling successful or failed
segments. This is due to the fact that it causes only
the states immediately adjacent to region A to be un-
dernormalized and that their degree of undernormaliza-
tion is precisely exactly equal to the sum of the transi-
tion probabilities to states Rj inside A for the original
transition probability matrix K(Ri ! Rj). In other
words, when in a state adjacent to region A, the prob-
ability for a path to fail due to undernormalization of
the matrix K 0 is precisely equal to the probability of
re-entering region A when using the original transition
probability matrix K. Similarly, for a given successful
path Γ = (R0,R1, ¢ ¢ ¢ ,RL), the path probability can be
written as

P 0
FS =

ρ(R0)
ZFS

L¡1∏

i=0

(1 ¡ m0(Ri)) K 0 (Ri ! Ri+1)
n0(Ri)

=
ρ(R0)
ZFS

L¡1∏

i=0

n0(Ri)K 0 (Ri ! Ri+1)
n0(Ri)

= PFS[R0,R1, ¢ ¢ ¢ ,RL], (23)

where the factors (1 ¡ m0(Ri)) represent the probability
that a path is continued. Therefore, the sole difference
between path simulations based on K and K 0 is that the
mechanism for path failure has changed. Instead of re-
entry into region A, the only mechanism for path failure
while using the transition matrix K 0 is undernormaliza-
tion.

The purpose of the second transformation now is to
reduce the degree of undernormalization of K 0. This is
accomplished by means of an importance function I(R),
defined on the space of microstates accessible to the sys-
tem, and which operates on the elements of matrix K 0

according to

K̃(Ri ! Rj) = K 0(Ri ! Rj)
I(Rj)
I(Ri)

. (24)

The best-possible alternative path distribution function
P̃ opt

A referred to in the previous section is now obtained
by using the optimal importance function, Iopt(R), which
completely eliminates the undernormalization of matrix
K 0 and produces a new transition probability matrix that
is fully normalized, i.e.

ñ(Ri) =
∑

j

K̃(Ri ! Rj)

=
∑

j

K 0(Ri ! Rj)
Iopt(Rj)
Iopt(Ri)

= 1 (25)

A path simulation based on matrix K̃opt will therefore
sample only successful paths, allowing an exact (i.e. zero-
variance) determination of the success probability ps.

Rewriting (25) in the form
∑

j

K 0(Ri ! Rj)Iopt(Rj) = Iopt(Ri), (26)

shows that the optimal importance function Iopt is the
right-eigenvector with unit eigenvalue of the transition
probability matrix K 0 obtained after transformation (20).

As mentioned above, the value of ps can be directly in-
ferred from the function Iopt. To see this, let us consider
in which way the probability of sampling a successful
path using matrix K̃opt is altered relative to a simulation
based on the original set of transition probabilities K. To
this end, we compare the respective sampling probabili-
ties PFS and P̃ opt

A of a given successful sequence of states
Γ = (R0,R1, ¢ ¢ ¢ ,RL). The former is given by Eq. (19),
whereas we have

P̃ opt
FS (Γ) =

ρ(R0)
ZFS

L¡1∏

i=0

K̃(Ri ! Ri+1)

=
ρ(R0)
ZFS

L¡1∏

i=0

[
K 0(Ri ! Ri+1)

Iopt(Ri+1)
Iopt(Ri)

]

=

[
ρ(R0)
ZFS

L¡1∏

i=0

K(Ri ! Ri+1)

]
Iopt(RL)
Iopt(R0)

= PFS(Γ)
Iopt(RL)
Iopt(R0)

. (27)

for the alternative one. Note that in the third line of
Eq. (27) we have substituted transition probability ma-
trix K 0 by K since a path, once exiting region A, will
never revisit it. Moreover, since all states are properly
normalized, the MC sampling can be carried out without
the need for adopting renormalization measures such as
those in Eq. (23), and each path will represent a success-
ful transition event. Eq. (27) shows that the probability
of sampling a successful path is enhanced by a factor
that depends only on the values of the optimal impor-
tance function Iopt in the initial and final microstates
of the path. In addition, given that the optimal impor-
tance function can be shown to be constant for all the
microstates in regions A and B, with values Iopt

A and
Iopt
B , respectively, the sampling probability for all possi-

ble successful paths will be enhanced uniformly by the
factor Iopt

B /Iopt
A . Eq. (14) then reveals the relation be-

tween the optimal importance function and the success
probability ps,

ps =
∫ 1

0

dτ

∫
DR(τ)

[
PFS[R(τ)]fS [R(τ)]

P̃ opt
FS [R(τ)]

]
P̃ opt

FS [R(τ)]

=
Iopt
A

Iopt
B

∫ 1

0

dτ

∫
DR(τ)P̃ opt

FS [R(τ)] =
Iopt
A

Iopt
B

. (28)
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C. Variational optimization of the importance
function

In principle, the recipe for identifying the optimal
importance function is given by Eqs. (20), (24) and
(26). Unfortunately, an exact solution to the eigenequa-
tion (26) is feasible only in very simple cases. In realistic
situations the numbers of degrees of freedom and acces-
sible microstates in the system are usually too large to
render an explicit solution possible. This situation re-
sembles the problem of solving the Schrödinger equation
for a many-body problem in quantum mechanics. This
similarity naturally leads to the development of an ap-
proximate scheme for the identification of an appropriate
importance function based on a standard approach uti-
lized in quantum mechanics: the variational method.22

In this scheme we select a trial function form for the
importance function involving a set of free parameters.
The parameters are then adjusted so as to bring the trial
function as close as possible to the optimal importance
function. The degree of normalization of the transition
probability matrix K̃ associated with the chosen trial
function serves as the quality measure in this process.
Specifically, since the optimal importance function is the
one for which all microstates are normalized, the vari-
ational optimization process attempts to adjust the pa-
rameters such that the normalization factors of the mi-
crostates become as close to unity as possible. As in the
variational method in quantum mechanics, the quality of
the resulting importance function is only as good as the
selected trial function form.

1. MC algorithm

To examine the practical aspects of the optimization
process we consider the case in which we have selected
a trial importance function of the form I = I(R, fαg)
which involves a set of adjustable parameters fαg. Af-
ter constructing the normal transition probability matrix
K of the system, we apply the transformations (20) and
(24) to obtain the modified transition probability matrix
K̃(fαg), which now depends explicitly on the values of
the adjustable parameters. The optimization of the pa-
rameters then proceeds by sampling paths using a MC
simulation based on K̃(fαg) and adjusting them such
that Eq. (26) is satisfied as closely as possible.

However, as in the case of the truncated matrix K 0,
the sampling procedure is somewhat more elaborate due
to the appearance of unnormalized states. In particu-
lar, in addition to the undernormalized states we have
seen earlier, the matrix K̃(fαg) will generally also con-
tain overnormalized states Ri for which

ñ(Ri; fαg) =
∑

Rj

K̃(Ri ! Rj ; fαg) > 1. (29)

so that renormalization is required to preserve the in-
terpretation of K̃ as being a matrix describing a set of

transition probabilities.
This is accomplished by attributing statistical weights

w to each path. The value of w varies along the sequence
of microstates of the path and its current value deter-
mines how the sampling of the next state is carried out.
At the initial microstate R0 of a path Γ = (R0,R1, ¢ ¢ ¢ ),
the weight is equal to unity, w(R0; Γ) = 1. The sub-
sequent values of w are then found by multiplying the
previous value by the current normalization factor. Ac-
cordingly, for the second microstate R1 in the path we
have

w(R1; Γ) = w(R0; Γ) ñ(R1; fαg), (30)

and so forth for subsequent states. As in the case of
K 0, the path sampling algorithm based on K̃(fαg) now
involves two steps. The first consists of a check of the
value of the path weight in the current state Ri.

If w(Ri; Γ) < 1 we allow for the possibility of the path
to be declared a failure with a probability m̃(Ri; Γ) =
1 ¡ w(Ri; Γ). Drawing a uniform random number ξ
between 0 and 1, the path is then terminated if ξ <
m̃(Ri; Γ), otherwise it is allowed to continue. The sec-
ond step, only in case of path continuation, then involves
resetting the path weight to unity, i.e. w(Ri; Γ) = 1,
followed by selecting the next state according to the
renormalized transition probability matrix elements of
K̃(Ri ! Rj ; fαg)/ñ(Ri).

If w(Ri; Γ) ‚ 1, however, we immediately proceed to
the second step by selecting the next state according to
the renormalized transition probability matrix, however
without resetting the path weight w(Ri; Γ) to unity.

In this manner, for any given successful path Γ =
(R0,R1, ¢ ¢ ¢ ,RL), the final statistical weight is greater
or equal to unity, w(Γ) = w(RL; Γ) ‚ 1. More specifi-
cally, the final path weight w(Γ) is given by

w(Γ) =
L∏

j=k+1

ñ(Rj), (31)

where Rk is the last state along the path at which the
weight was found to be smaller than unity. The corre-
sponding sampling probability for the path can be shown
to be

P̃FS(Γ; fαg) =
ρ(R0)
ZFS

L¡1∏

i=0

K̃(Ri ! Ri+1; fαg)
w(Γ)

=

[
ρ(R0)
ZFS

L¡1∏

i=0

K(Ri ! Ri+1)
w(Γ)

]
I(RL; fαg)
I(R0; fαg)

=
(

PFS(Γ)
w(Γ)

)
I(RL; fαg)
I(R0; fαg)

. (32)

2. Optimization criteria

Using the above simulation algorithm, we now need
to optimize the parameter set fαg. This process can be
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guided by a variety of optimization criteria. One of them
is based on the fact that the transition probability matrix
K̃ is optimized if, and only if, all states are properly
normalized. In this view, if we define the quantity W as
the simple product of all normalization factors in a path,
disregarding whether it is successful or a failure, i.e.

W =
L¡1∏

i=0

ñ(Ri; fαg), (33)

the optimal importance function Iopt(R) is obtained only
if W = 1 for all paths. In this context, the optimization
of the set of parameters fαg may proceed by minimizing
the quality measure

Q1(fαg) · (ln W )2. (34)

Since Q1 will be rigorously zero for all paths only for
Iopt(R), the optimized set of parameters fαgopt for the
selected function form can then be obtained by minimiz-
ing the path average

hQ1(fαgopt)i = min
fαg

[Q1(fαg)] . (35)

A second criterion is based on the variance of the alter-
native estimator for ps for the modified path probability
Eq. (32). Using Eqs. (14), (16) and (32) it follows that,
for a sample of N paths generated using P̃FS(Γ; fαg), ps

is estimated as the average

ps = hf̃SiP̃FS
… 1

N

N∑

i=1

w(Γi) fS [Γi]
(

I(R0(Γi))
I(RL(Γi))

)

= p̃s
1

Ns

Ns∑

i=1

w(Γi)
(

I(R0(Γi))
I(RL(Γi))

)
(36)

where R0(Γi) and RL(Γi) are the initial and final states
of the paths and p̃s = Ns/N with Ns the number of
successful paths.

An effective evaluation of the success probability ps

through the estimator Eq. (36) requires that its variance
be as small as possible. In this context, an alternative
optimization criterion involves the minimization of the
variance in the weights of successful paths, i.e.

Q2(fαg) · hw2is ¡ hwi2s. (37)

3. Optimization algorithms

Once an optimization criterion has been selected, we
need a minimization algorithm for the evolution of the
parameter set in the optimization process. For this pur-
pose a number of numerical approaches is available. Sim-
ilar to variational quantum MC,18,19 the minimization
can be carried out using simulated annealing and ge-
netic algorithms for global optimization purposes as well
as steepest-descent or conjungate-gradient algorithms for

further local refinement in the space of adjustable param-
eters. In the present work we rely mostly on a combi-
nation of a genetic algorithm and local steepest-descent
minimization.

III. APPLICATIONS

To illustrate the practical operation of the presented
importance sampling framework we consider its applica-
tion to two simple model problems, a one-dimensional
potential well and a two-dimensional system with two
stable states separated by two distinct barriers.

A. One-dimensional potential well

First we consider the following simple one-dimensional
system, described by the potential-energy function

V (x) = x2 exp(¡0.5 x2), x 2 [¡2, 5] (38)

shown in Fig. 2. For convenience we discretize the do-
main into the set of states xi = ¡2 + (i ¡ 1)∆x, with
∆x = 0.1 and i = 1, 2, ¢ ¢ ¢ , 71. The system contains a
stable minimum at x = 0 and we are interested in transi-
tions that cross the barrier and reach the state x = 5 at
a temperature kB T = 0.2585 using the Metropolis MC
algorithm. For this purpose, we define the fail and suc-
cess regions A and B according to the individual states
xA = 0 and xB = 5, respectively. The conventional
Metropolis transition probability matrix for this system
is given as

K(xi ! xj) =





1
2 min [ 1, exp(¡∆Vij/kBT )] , j = i § 1

1 ¡ ∑
j=i§1 K(xi ! xj), j = i

(39)
with ∆Vij = V (xj) ¡ V (xi). Proper boundary condi-
tions are adopted at the limits x = ¡2 and x = 5 of the
domain, allowing trial steps to the left or right only.

The first step in the importance sampling scheme is to
implement the transformation defined in Eq. (20), elimi-
nating transitions that take the system from a state out-
side A to one within A, having

K 0(xi ! xj) =





0, if xi 6= xA ^ xj = xA

K(xi ! xj) , otherwise
(40)

Based on Eq. (26), and given the simplicity of the
problem we can explicitly determine the optimal impor-
tance function Iopt by identifying the right-eigenvector
with eigenvalue 1 of matrix K 0. The resulting eigenvec-
tor, normalized such that its value in the success state
xB = 5 equals 1, is plotted in Fig. 3. The plot shows
that the value of the importance function in the fail
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region is very close to zero, indicating that the proba-
bility of sampling a successful transition event, as de-
fined in Eq. (28), is extremely low. More specifically,
Fig. 4, which shows Iopt(x) on a logarithmic scale, re-
veals that the probability of sampling a successful tran-
sition is ps = Iopt(xA)/Iopt(xB) = 5.843 ¢ 10¡6 for the
system and temperature under consideration. Note that
the plot only covers the states x ‚ 0 since Iopt(x) = 0 for
all states x < 0, implying that any path starting in such
a state fails. This, of course, is a consequence of the low
dimensionality of the problem, forcing the path to pass
through the fail state x = xA in order to reach xB .

Let us now re-examine the problem using the varia-
tional method outlined above and compare the results to
the ones obtained from the exact matrix diagonalization
method. The first element in the application of the vari-
ational method involves the choice of a function form for
the importance function. As shown in Fig. 4, it should
be able to describe a variation of several orders of magni-
tude between the regions of failure and success. A simple
functional form that allows such variations is the follow-
ing exponential of a Gaussian

I(x; A,α, x0) = exp
{
A exp

[¡α(x ¡ x0)2
]}

, (41)

in which the three parameters A, α and x0 describe the
height, width and center position of the Gaussian, re-
spectively.

Using this trial functional form we utilize a genetic op-
timization algorithm23 for the minimization of the qual-
ity factor Q1 in Eq. (34). Each iteration in the algorithm
involves a generation consisting of a population of 30 dis-
tinct parameter sets. Initially, the sets are generated ran-
domly, with A 2 [¡20, 0], α 2 [0, 2] and x0 2 [¡1, 1]. For
each parameter set we generate a series of N = 500 paths
using the respective modified matrices K̃ and measure
the corresponding average of the quality measure Q1,

hQ1(A,α, x0)i =
1
N

∑

i

Q1(Γi;A,α, x0), (42)

where the summations runs over all generated paths Γi,
both successful and failed. In addition we also compute
the path averages of the derivatives of Q1 with respect to
the 3 parameters, h∂Q1/∂Ai, h∂Q1/∂αi and h∂Q1/∂x0i,
which represent generalized forces and can be used in
a local steepest-descent minimization scheme. Based on
the estimators obtained from the 500 trajectories for each
parameter set, the members of the population are then
ranked according to increasing value of Q1. Next, a new
generation of parameter sets is generated by first car-
rying out one steepest-descent step for all 30 members
using the measured generalized forces. Next, we add 6
more members to the population; three correspond to a
random perturbation of the 3 fittest parameter sets (i.e.,
those with the lowest Q1-values), and the other 3 are cho-
sen completely randomly. Using the new population of
36 members, 500 MC trajectories are generated to deter-
mine the new Q1-values. The members are again ranked

according to increasing Q1, after which the worst 6 pa-
rameter sets are discarded. This procedure is repeated
until convergence, which is reached after the genetic evo-
lution produces a generation in which all members are
essentially identical.

Fig. 5 shows the evolution of the genetic optimization
algorithm along a cycle of 17 generations. The plot shows
the values of the parameters A and α for the 30 pop-
ulation members for three different generations. Panel
a) shows the initial population generated randomly on
the intervals specified above. Panel b) shows the pop-
ulation after the 14-th iteration, showing a clear clus-
tering. The process may be considered converged after
generation 17, for which all 30 members of the popula-
tion are essentially the same, as shown in panel c). The
parameter values for the best set are A = ¡12.19599,
α = 0.191672, and x0 = ¡0.398851, respectively, which
gives the importance function shown as the line in Fig. 4
and hQ1(A, α, x0)i … 1.39, which implies an average path
normalization factor of W … 4.01.

Even though the importance function resulting from
the variational optimization procedure is quite differ-
ent from the optimal one, a MC simulation based on
it already shows good efficiency. Running a batch of
1 ¢ 106 path simulations, the modified success probabil-
ity is measured to be p̃s = 0.211 § 0.001, so that ap-
proximately 1 in every 5 attempts leads to a successful
transition event, with an the average success path weight
ws = 3.61 § 0.07 and a variance Q2 = hw2is ¡ hwi2s …
100. The success probability ps in the original system
is then estimated according to Eq. (36), which, with
I(R0(Γi))/I(RL(Γi)) = 7.6253 ¢ 10¡6 for the optimized
parameter set, gives ps = (5.8§0.1) ¢10¡6, in good agree-
ment with the exact result. The simulation also provides
an estimator for the average successful path length,

hτis =
1

Ns

1
hwis

Ns∑

i=1

w(Γi)L(Γi), (43)

giving hτis = (3.79 § 0.01) ¢ 102 MC steps.

Once the success probability ps and average successful
path length are known, the computation of the forward
transition rate constant kAB becomes straightforward,
requiring only the average length of failed paths. The lat-
ter is easily found by simulating a series of trajectories ac-
cording to the unbiased transition probability matrix K.
From a set of 103 paths we obtain hτif = (9.78 § 0.01).
Using Eq. (1) and (2) we estimate the average waiting
time and rate as τw = (1.68 § 0.03) ¢ 106 MC steps and
kAB = (5.9 § 0.1) ¢ 10¡7 per MC step. These results
are in good agreement with the estimates obtained from
the 103 direct path MC simulations in which the average
waiting time and the corresponding transition rate were
found to be τw,direct = (1.71 § 0.06) ¢ 106 MC steps and
kAB = (5.8 § 0.2) ¢ 10¡7 per MC step.
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B. Two-dimensional case

As a second application, we consider rare transition
events in the two-dimensional potential-energy surface

V (x, y) =
1
6

f4[1 ¡ x2 ¡ y2]2 + 2[x2 ¡ 2]2 +

[(x + y)2 ¡ 1]2 +
[(x ¡ y)2 ¡ 1]2 ¡ 2g + 0.02 y, (44)

which is shown in the contour plot of Fig. 6. The model
contains two metastable states A and B at (x, y)A =
(¡1.1, 0) and (x, y)B = (1.1, 0) with energies V (A) =
V )(B) = ¡0.0812, separated by two distinct barriers S1

and S2 at (x, y)S1 = (0, 1) and (x, y)S2 = (0, ¡1) with
energies V (S1) = 1.02 and V (S2) = 0.98, respectively.

We discretize the space of accessible states in terms of
a two-dimensional square grid with spacing ∆x = ∆y =
0.1 on the domain x, y 2 [¡1.5, 1.5]. As in the one-
dimensional problem, we define the fail and success re-
gions as the individual states A and B, respectively. The
MC dynamics of the system is governed by the Metropo-
lis algorithm in which only the four first-neighbor states
are directly accessible. Considering the system at a tem-
perature kBT = 0.08617, the explicit diagonalization of
the truncated transition matrix K 0 yields the optimal
importance function Iopt(x, y), shown in Fig. 7, and the
associated success probability ps = 6.154 ¢ 107.

We now re-examine the problem using the variational
optimization approach. Once again we adopt a simple
exponential of a Gaussian as our trial function form for
the importance function, writing

I(x, y) = exp
{
A exp

[¡α(x ¡ x0)2 ¡ β(y ¡ y0)2
]}

,
(45)

which involves the set of 5 adjustable parameters A, α,
β, x0 and y0.

As in the one-dimensional problem, we utilize a genetic
algorithm23 and start by optimizing the parameter set
with respect to quality measure Q1. The algorithm is es-
sentially the same as the one used in the one-dimensional
problem. In each generation we considered a population
of 40 parameter sets. Initially, the 40 sets are generated
randomly, with A 2 [¡50, 0], α and β 2 [0, 4], x0 and
y0 2 [¡2, 2]. For each parameter set, a series of 103 MC
path simulations was carried out to measure the average
value of Q1 over both failed and successful paths. The
members of the population are then ranked according to
increasing value of Q1 after which a new generation is
produced by carrying out one steepest-descent step for
all 40 members using the measured generalized forces.
As before, we add 10 more members to the population;
three correspond to a random perturbation of the 5 pa-
rameter sets with the lowest Q1-value, and the remaining
5 are chosen completely randomly. Using the new popu-
lation of 50 members, 103 MC trajectories are generated
to determine the new Q1-values. The members are again
ranked according to increasing Q1, after which the worst
10 parameter sets are discarded.

Convergence requires around 20 generations, after
which the 40 population members in a generation are
essentially the same, reaching an average value of Q1 …
0.84 or an average path normalization factor W … 2.3,
and a modified success probability of p̃s … 0.53 at gener-
ation 20. The associated fittest parameter set is given
by A = ¡22.497462, α = 2.449118, β = 0.550239,
x0 = ¡1.143219, and y0 = ¡0.804378.

From the insight gained in the one-dimensional prob-
lem, one might expect that the low Q1-value and high
success probability p̃s, are indicative of the parameter
set’s suitability for an accurate calculation of ps. Anal-
ysis of the obtained importance function according to
quality measure Q2, however, shows that is not the case
here. In contrast to the 1-dimensional problem, the pa-
rameter set optimized with respect to Q1 leads to an ex-
tremely large variance in the path weights w of successful
paths. Specifically, a simulation based on 106 trajecto-
ries reveals that the average weight of a successful path is
hwis … 2£103, while its variance is more than 6 orders of
magnitude larger, at hw2is ¡ hwi2s … 4£109. As a result,
the importance function optimized with respect to Q1,
despite its elevated success probability p̃s, is unreliable
for an accurate estimation of ps.

Therefore, we repeat the above optimization process,
but now searching for parameter sets that lead to low
values of quality measure Q2. To this end we employ the
same genetic algorithm used above, but now ranking the
population members according to Eq. (37). Convergence
is again reached after approximately 20 generations, pro-
ducing the parameter set A = ¡14.646743, α = 1.882146,
β = 0.845562, x0 = ¡1.089187, and y0 = 0.621533. With
this result the average successful path weight becomes
hwis … 1.22 with a variance hw2is ¡ hwi2s … 5.6 and an
average success probability p̃s … 1.21 ¢ 10¡2. Running a
batch of 106 path simulations using this parameter set,
we estimate the success probability in the original system
to be ps = (3.8 § 0.2) ¢ 10¡7.

While the statistical quality of this estimate is good,
its value is significantly lower than the exact result ob-
tained by explicit matrix diagonalization. The reason for
this becomes clear after analyzing the successful trajec-
tories generated by the optimized importance function.
It shows that only one of the two reactive mechanisms is
sampled, with all reactive paths passing through barrier
S2. Accordingly, the obtained estimator for ps corre-
sponds only to the probability ps(S2)of observing a re-
active event associated with mechanism S2 and thus un-
derestimates the total success probability.

The failure of the above importance function to sam-
ple both mechanisms is due to the fact that the posi-
tion of its minimum is closer to saddle point S2. In this
view, an improved importance function may be obtained
by forcing its minimum to coincide with the position of
the fail state A. For this purpose we repeat the genetic
optimization algorithm, but allowing only the parame-
ters A, α and β to vary, while x0 = xA and y0 = yA

are held fixed. Convergence is reached after 30 gener-
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ations, resulting in the parameter set A = ¡10.285377,
α = 3.601954, β = 1.554864, with x0 = ¡1.1 and y0 = 0,
with an average successful path weight hwis … 1.0061
and variance hw2is ¡ hwi2s … 3.66 ¢ 10¡3 at a success
probability p̃s … 1.8 ¢ 10¡2. The drastic reduction of the
variance in the weight of successful paths is indicative
of the improvement of the obtained importance function
compared to the previous one. This is reflected in the fact
that the importance function now samples both transi-
tion mechanisms, as is illustrated by the distribution of
y-values of the reactive paths as they cross x = 0 shown
in Fig. (8. As a result, the estimated success probability
ps = (6.18 § 0.04) ¢ 10¡7, as measured from a series of
106 path simulations, is now in excellent agreement with
the exact result ps = 6.15 ¢ 10¡7 obtained by explicit
matrix diagonalization. The relative contributions due
to both mechanisms, as obtained from the distribution
function in Fig. (8), are ps(S1) = (2.49§ 0.02) ¢ 10¡7 and
ps(S2) = ps ¡ ps(S1) = (3.69 § 0.02) ¢ 10¡7, respectively,
the latter of which is in good agreement with the result
obtained using the previous importance function.

The difference between the last two optimization re-
sults is indicative of difficulties with the optimization
procedure. While the first attempt could, in principle,
have converged to the last importance function, it en-
countered a worse local minimum of Q2, leading to the
sampling of only one of the available reactive mecha-
nisms. This demonstrates that an indication of good
statistical quality alone is not always sufficient to guar-
antee an accurate estimate for ps. On the other hand,
this problem is not a particular flaw of the present im-
portance sampling approach. Rather, it is a problem
of global optimization in general, in which one can never
guarantee that an obtained result actually corresponds to
the global minimum of the problem at hand. Moreover,
other rare-event techniques are also sensitive to similar
issues. The TPS method, for instance, may suffer er-
godicity problems when the Markov chain of transition
paths becomes dependent on the initial transition path in
systems where two or more competing saddle points are
separated by a high barrier. In the context of the present
approach, this issue calls for the application of robust
global optimization strategies including more elaborate
genetic algorithms than the one utilized here and simu-
lated annealing techniques. In this light, the importance
sampling approach will benefit from the continuing ef-
forts in the development of effective global optimization
techniques 23.

IV. SUMMARY

The importance sampling method presented in this
work represents a novel approach to the rare-event prob-
lem within the framework of the statistical mechanics of
Markovian system trajectories. The starting point of our
approach is the fact that one can unambiguously slice a
reactive trajectory from state A to B into a sequence of

failed paths followed by a single successful path. The for-
mer is defined as a sequence of microstates that initiates
in region A, exits it at some instant, but returns to it
before reaching B, while a successful path is defined as
a sequence of states that initiates in A and succeeds in
reaching B before returning to state A. In this formu-
lation, the probability ps of sampling a successful path
from some initial condition in A is the most fundamental
a transition event because if it is know the calculation of
the transition rate becomes straightforward.

The idea of the importance sampling method now is
to compute the success probability using a “hit-or-miss”
Monte Carlo quadrature approach, in which one samples
a series of trajectories from the fail/success ensemble and
counts the fraction of successful paths. However, if no
special measures are adopted this approach is doomed to
fail since the probability of generating successful paths is
typically very low, leading to very poor statistics through
a large variance.

The strategy of the method then is to bias the sampling
of system paths so as to favor the generation of successful
paths. This is accomplished by means of an importance
function, which affects the transition probabilities used to
sample the sequence of microstates that comprise a path.
The advantage of using an importance function is that it
contains all quantitative information needed to determine
the amount by which the sampling probability of a given
path has been biased. Formally, there exists an opti-
mal importance function for which the bias is optimized
and unsuccessful paths are suppressed entirely, generat-
ing only reactive transition events. In this manner, the
rare-event problem has been transformed into an opti-
mization problem, that of identifying the best-possible
importance function. In practice, however, the identifi-
cation of the optimal importance function is feasible only
in simple problems involving few degrees of freedom. On
the other hand, the optimal importance function obeys
a variational principle, which, similar to the variational
method for determining a many-body ground state wave
function in quantum mechanics, provides a systematic
approach toward finding a suitable approximation. The
scheme is based on the choice of a trial function form
containing a set of adjustable parameters for the impor-
tance function. The parameters are then adjusted so as
to bring the chosen trial function as close as possible to
the optimal importance function.

In the two model applications, the variational approach
has demonstrated to be effective in generating good ap-
proximations to the optimal importance function, allow-
ing an accurate and efficient evaluation of the success
probabilities and the associated transition rates. In prin-
ciple, the importance sampling scheme should be widely
applicable, providing a generic framework for quantifying
the statistics of rare-event processes in atomistic sim-
ulations. The two main challenges now are to deduce
guidelines for the construction of suitable trial function
forms for rare-event processes involving multiple degrees
of freedom and to evaluate different minimization strate-
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gies for the optimization of the corresponding sets of ad-
justable parameters. However, in light of the conceptual
similarity with the variational MC method in quantum
mechanics, which has been successfully applied to com-
plex many-electron systems, this task may be faced with
confidence.
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FIG. 1: Schematic representation of a reactive trajectory in
an energy landscape E(R) with the (meta)stable states A and
B. Such a trajectory can be unambiguously sliced a into a
sequence of failure paths followed by a single successful path.
A failed path is defined as a sequence of microstates that
initiates in region A, exits it at some instant, but returns
to it before reaching B. In contrast, a successful segment is
defined as a sequence of states that initiates in A and succeeds
in reaching B before returning to state A. The shown reactive
trajectory consists of 3 failed paths, namely the sequences of
states 0 ! 1, 1 ! 2, and 2 ! 3, and the successful path
3 ! 4.
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FIG. 2: Potential-energy surface of Eq. (38). The fail and
success regions A and B are defined as xA = 0 and xB = 5,
respectively.
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FIG. 3: Optimal importance function for the one-dimensional
escape problem at a temperature kBT = 0.2585.
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FIG. 4: Optimal importance function (circles) and result
of genetic minimization algorithm (line) using trial function
form Eq. (41) for the one-dimensional escape problem at
a temperature kBT = 0.2585. Values of parameters are
A = ¡12.19599, α = 0.191672, and x0 = ¡0.398851. For
the optimal importance function values are shown only for
states x ‚ 0 because Iopt(x) = 0 for all states x < 0.
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FIG. 5: Evolution of genetic algorithm in the optimization of
the parameters A and α in the trial function form Eq. (41).
Panel a) shows values of the 30 parameter sets before the first
iteration. Panel b) shows distribution of population members
in the 14-th generation. Panel c) shows result after 17 gener-
ations.
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FIG. 6: Potential-energy contours of 2-dimensional system
described by Eq. (44).
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FIG. 7: The natural logarithm of the optimal importance
function Iopt(x, y).
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FIG. 8: Distribution of y-values of the reactive trajectories
at x = 0 as sampled with the optimized importance function
with fixed x0 and y0.


